Multi-Objective Search Results Clustering
نویسندگان
چکیده
Most web search results clustering (SRC) strategies have predominantly studied the definition of adapted representation spaces to the detriment of new clustering techniques to improve performance. In this paper, we define SRC as a multi-objective optimization (MOO) problem to take advantage of most recent works in clustering. In particular, we define two objective functions (compactness and separability), which are simultaneously optimized using a MOO-based simulated annealing technique called AMOSA. The proposed algorithm is able to automatically detect the number of clusters for any query and outperforms all state-of-the-art text-based solutions in terms of Fβ-measure and Fb3-measure over two gold standard data sets.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملروش جدید تقطیع تصویر بر مبنای خوشهبندی فازی مبتنی بر تکامل تفاضلی چندهدفه
Image segmentation is one of the most important and difficult steps in machine vision problems and achieving the desired results often requires satisfaction of different objectives. One approach to face this situation uses multi-objective fuzzy clustering of pixels in the feature space. This paper proposes a new strategy for search within the family of multi-objective differential evolution alg...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کاملA Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach (RESEARCH NOTE)
This paper proposes a novel, bi-objective mixed-integer mathematical programming for an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making (fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective formulation can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014